
LAFAYETTE COLLEGE

Advantages

- •Reduces carbon emissions
- •Decreases dependence on imported oil
- •Fewer parts; easier to maintain
- •Regenerative braking reduces need for fossil fuel (HEV, PHEV)
- Advances power electronics
- •Reduces noise pollution

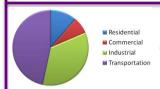
Challenges

- •Limited driving range
- •Long charging time
- •High cost of battery
- •Immature infrastructure

An example of a hybrid electric vehicle with parts labeled

Abbreviations

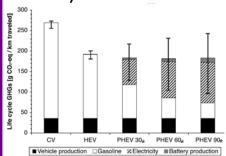
EV- Electric Vehicle


HEV- Hybrid Electric Vehicle

PHEV- Plug-in Hybrid Electric Vehicle

ZEV- Zero Emission Vehicle

ICE-Internal Combustion Engine


CV- Conventional Vehicle

2011 Primary Energy Consumption by End-Use Sector

	CV	HEV	PHEV	EV
Propulsion System	ICE	ICE + Electric Motor	ICE + Electric Motor	Electric Motor
Fuel	Liquid fuel	Liquid fuel	Liquid fuel, Electricity	Electricity
Battery	Lead Acid	NiMH	Li-ion	Li-ion

Life Cycle GHG Emissions

*PHEVs with all-electric ranges of 30, 60, or 90km

Pollution Reduction

One of the attractive characteristics of the EV is reduced pollution emissions. When looking at the tailpipe of an EV this is certainly true, but if the electricity used for propulsion is coming from burning of fossil fuels, the pollution source is simply being relocated along the production line.

Well-to-wheel (WTW) analysis incorporates efficiency on a holistic level– from fuel extraction in the wells to the energy needed to move the wheels, and every step along the way. WTW can be broken up in two sections for a closer analysis—well-to-tank (WTT) and tank-to-well (TTW). These can then be compared across vehicles using the GREET model, which stands for greenhouse gases, regulated emissions, and energy use in transportation.

Energy Consumption, Efficiency, and Emissions for Passenger Cars Using GREET

	ICE	PHEV	EV
Total Energy (W h)	257,551	526,261	1,632,131
WTT efficiencey	79.5%	66.5%	38.0%
TTW efficiency	21.9%	23%	48.51%
WTW efficiency	17.41%	15.29%	18.43%
CO ₂ (g/million BTU)	17,495	57,024	219,704
CH₄ (g/million BTU)	109.120	145.658	296.031
N ₂ O (g/milion BTU)	1.152	1.535	3.111
VOC: Total (g/million BTU)	27.077	25.630	19.679
CO: Total (g/million BTU)	15.074	23.553	58.448
NO : Total (g/million BTU)	50 052	87.100	239 571

Fuel Economy Comparisons Across Vehicles

	ICE 2012 Honda Accord	HEV 2012 Toyota Prius	PHEV Chevrolet Volt	E∀ 2012 Nissan Leaf
Manufacturer's Suggested Retail Price (MSRP)	\$21,480 - \$31,930	\$24,000 - \$29,805	\$39,145	\$35,200
Miles per Gallon (MPG)	27	50	37	-
Miles per Gallon of Gasoline Equivalent	-	-	98	99
Miles on a Tank/Charge	450	536	380	73
Time to Charge Battery	-	-	4 hrs @ 240 V	7 hrs @ 240 V
Annual Fuel Cost	\$1,950*	\$1,050*	\$950**	\$600***

*Based on 45% highway, 55% city driving, 15,000 annual miles and current fuel prices.

single charge

the road by 2015

<u>Batteries</u>

One of the challenges with EVs is that today's battery technology (the energy source in EVs) has a low energy density compared to liquid fuels such as gasoline or diesel. Therefore, the batteries in EVs are rather large and contribute to the high capital cost.

Newer lithium-ion (Li-ion) batteries have a higher energy density than previous batteries such as nickel metal hydride (NiMH) or lead acid, but is still much lower than liquid fuel.

Infrastructure

A comprehensive foundation is necessary for EVs to become more widespread. This includes, but is not limited to: charging stations, standardization of equipment and safety issues, reliable support, and increased renewable energy generation.

Electric Charging Station Locations by State

1990:California Air Timeline Resources Board (CARB) Average Fuel Economy standard (CAFÉ) sets the mandates that 2% of 1976: Congress enacts the vehicles should be ZEV 1912: 34,000 EVs are Electric and Hybrid Vehicle by 1998, 5% by 2001, and be 35 MPG by 2020 Research, Development and registered and they 10% by 2003. (Later relaxed because of outnumber gas-powered Demonstration Act of 1976 vehicles 2-to-1 infeasibility) 1834 1900 2000 1993: The 2008: Tesla motors 2009: The US 1834: The first Partnership for produces the Tesla President 1973: Arab oil FV is invented Next Generation Roadster, which is provides \$2.4 embargo Vehicles (PNGV) is the first vehicle to billion for PHEV increases established use a Lithium-ion development 1920s: EVs demands for between federal battery and the first and establishes a disappear and ICE alternative laboratories and BEV to travel more goal of having 1 vehicles become energy sources automotive than 200 miles on a million PHEV on

industries

HEV Sales by Manufacturer 400.000 ■ VW Touareg Hybrid ■ Tovota of Vehicles Sold Porsche 300,000 ■ Nissan ■ Mercedes-Benz 200,000 ■ Mazda ■ Lexus Hvundai 100,000 ■ Honda ■ General Motors ■ Ford ■ Chrysler 1999 2007 ■ BMW Calendar Year

^{**}Based on 15,000 miles annual driving and an electricity cost of \$0.12/kWh and gasoline prices of \$3.99 per gallon for premium and \$3.72 per gallon for regular

^{***}Values rounded to nearest \$50. Based on 15,000 miles annual driving and an electricity cost of \$0.12/kWh

For more:

U.S. DOE Alternative Fuels Data Center

http://www.afdc.energy.gov/

U.S. DOE Vehicle Technologies Program

http://www1.eere.energy.gov/ve hiclesandfuels/index.html

Hybrid Electric Vehicle (img)

DOE Vehicle Technologies Program-- Hybrid Electric Vehicles

http://www1.eere.energy.gov/vehiclesandfuels/technologies/sy stems/hybrid_electric_vehicles.html

For more:

http://www.fueleconomy.gov/feg/hybridAnimation/hybrid/hybr idoverview.html

EIA Monthly Energy Review

http://www.eia.gov/totalenergy/data/mo nthly/pdf/sec2_3.pdf

Comparison of ICE, HEV, PHEV, EV

Center for Automotive Research (CAR) Green and Connected http://www.cargroup.org/assets/files/green.pdf

Life Cycle GHG Emissions

Samaras, C. and Meisterling, K. (2008) "Life Cycle Assessment of Greenhouse Gas Emissions from Plug-in Hybrid Vehicles: Implications for Policy" http://pubs.acs.org/doi/pdfplus/ 10.1021/es702178s

Pollution Reduction

Husain, Iqbal. Electrical and Hybrid Vehicles: Design Fundamentals. 2nd ed. Boca Raton: CRC, 2011.

Energy Consumption, Efficiency, and Emissions for Passenger Cars **Using GREET**

Husain, Igbal. *Electrical and Hybrid* Vehicles: Design Fundamentals. 2nd ed. Boca Raton: CRC, 2011.

For more:

GREET Model

http://greet.es.anl.gov/

Fuel Economy Comparisons Across Vehicles

DOE FuelEconomy.gov http://www.fueleconomy.gov/

For more:

HEV: http://www.fueleconomy.gov/feg/hybrids.jsp PHEV: http://www.fueleconomy.gov/feg/phevsbs.shtml EV: http://www.fueleconomy.gov/feg/evsbs.shtml

Batteries

Mi, Chris, M. Abul Masrur, and David Wenzhong Gao. Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives. Chichester: John Wiley & Sons, 2011. Print.

Infrastructure

Mitchell, William J., Christopher E. Borroni-Bird, and Lawrence D.Burns. Reinventing the Automobile: Personal Urban Mobility for the 21st Century. Cambridge: MIT P, 2010.

Electric Charging Station Locations by State

DOE Alternative Fuels Data Center (AFDC) Electric Charging Station Locations by State http://www.afdc.energy.gov/data/ta

b/all/data_set/10366

Timeline

Husain, Igbal. Electrical and Hybrid Vehicles: Design Fundamentals. 2nd ed. Boca Raton: CRC, 2011.

Mi, Chris, M. Abul Masrur, and David Wenzhong Gao. Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives. Chichester: John Wiley & Sons, 2011.

HEV Sales by Manufacturer

Oak Ridge National Lab (ORNL) Transportation Energy Data Book, section 6-8

http://cta.ornl.gov/data/chapter6.shtml

DOE Alternative Fuels Data Center (AFDC) U.S. HEV Sales by Model

http://www.afdc.energy.gov/data/tab/vehicles/data_s et/10301